Developmental change and sexual difference in synaptic modulation produced by oxytocin in rat substantia gelatinosa neurons
نویسندگان
چکیده
We have previously reported that oxytocin produces an inward current at a holding potential of -70 mV without a change in glutamatergic excitatory transmission in adult male rat spinal lamina II (substantia gelatinosa; SG) neurons that play a pivotal role in regulating nociceptive transmission. Oxytocin also enhanced GABAergic and glycinergic spontaneous inhibitory transmissions in a manner sensitive to a voltage-gated Na+-channel blocker tetrodotoxin. These actions were mediated by oxytocin-receptor activation. Such a result was different from that obtained by other investigators in young male rat superficial dorsal horn neurons in which an oxytocin-receptor agonist enhanced glutamatergic and GABAergic but not glycinergic spontaneous transmissions. In order to know a developmental change and also sexual difference in the actions of oxytocin, we examined its effect on spontaneous synaptic transmission in adult female and young male rat SG neurons by using the whole-cell patch-clamp technique in spinal cord slices. In adult female rats, oxytocin produced an inward current at -70 mV without a change in excitatory transmission. GABAergic and glycinergic transmissions were enhanced by oxytocin, the duration of which enhancement was much shorter than in adult male rats. In young (11-21 postnatal days) male rats, oxytocin produced not only an inward but also outward current at -70 mV, and presynaptically inhibited or facilitated excitatory transmission, depending on the neurons tested; both GABAergic and glycinergic transmissions were enhanced by oxytocin. The inhibitory transmission enhancements in adult female and young male rats were sensitive to tetrodotoxin. Although the data may not be enough to be estimated, it is suggested that synaptic modulation by oxytocin in SG neurons, i.e., cellular mechanism for its antinociceptive action, exhibits a developmental change and sexual difference.
منابع مشابه
Synaptic modulation and inward current produced by oxytocin in 1 substantia gelatinosa neurons of adult rat spinal cord slices 2 3
Synaptic modulation and inward current produced by oxytocin in 1 substantia gelatinosa neurons of adult rat spinal cord slices 2 3 Chang-Yu Jiang, Tsugumi Fujita, and Eiichi Kumamoto 4 5 Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, 6 Japan 7 8 Running head: effect of oxytocin on synaptic transmission 9 10 Number of figures: 10; number of pages: 45; number of wo...
متن کاملSynaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices.
Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord s...
متن کاملMinocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn
Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmissi...
متن کاملAnandamide Depresses Glycinergic and GABAergic Inhibitory Transmissions in Adult Rat Substantia Gelatinosa Neurons
Cannabinoid CB1 receptors have been found in the superficial dorsal horn of the spinal cord, particularly the substantia gelatinosa (SG), which is thought to play a pivotal role in modulating nociceptive transmission. Although cannabinoids are known to inhibit excitatory transmission in SG neurons, their effects on inhibitory transmission have not yet been examined fully. In order to know furth...
متن کاملModulation of synaptic transmission from primary afferents to spinal substantia gelatinosa 1 neurons by group III mGluRs in GAD 65 - EGFP transgenic mice
Modulation of synaptic transmission from primary afferents to spinal substantia gelatinosa 1 neurons by group III mGluRs in GAD65-EGFP transgenic mice 2 3 Lian Cui, Yoo Rim Kim, Hye Young Kim, Seok Chan Lee, Hee-Sup Shin, Gábor Szabó, Ferenc Erdélyi, 4 Jun Kim, Sang Jeong Kim 5 6 Department of Physiology, Seoul National University College of Medicine, Seoul, Korea 7 Department of Brain and Cogn...
متن کامل